

PACI Coagulation-Ceramic Filtration as an Advanced Water Treatment **Process for Virus Removal**

L. Ikner*, C. Gerba*, T. Yonetani**, H. Katayama***, and Y. Matsui****

*The University of Arizona WEST Center, Tucson, AZ, USA, ikner@email.arizona.edu ** 7, Yawata-kaigandori, Ichihara-city Chiba 290-8511, Japan, yonetani-takashi@metawater.co.jp *** The University of Tokyo, Bunkyo-ku Tokyo, Japan, katayama@env.t.u-Tokyo.ac.jp **** 1-25 Kanda-sudacho, Chiyoda-ku Tokyo, 101-0041, Japan, matsui-yasuhiro@metawater.co.jp

INTRODUCTION

Direct Potable Reuse (DPR) - a Growing Reality for Arid Lands

- Tucson, Arizona: historically a groundwater-reliant
- (297 mm rainfall/yr)
- supplies inevitable

Study Site: Water & Energy Sustainable Technology (WEST) Center

Located in Tucson, AZ USA

- Partnership between Pima County, The University of Arizona, and

Study Purpose

- Determine the efficacy of PACI coagulation-ceramic microfiltration as an advanced treatment process for virus

METHODS

Figure 2. Experimental Set-Up at the WEST Center

Spike Experiments: MS2 Bacteriophage 15597-B1

Purpose: determine log₁₀ removal values of infectious viruses from 3° Effluent (i.e. recycled wastewater)

Test Organism

- ✤ MS2: surrogate for non-enveloped, human enteric
- viruses
- lightharpoint (pl) = 3.9
- ✤ Host: Escherichia coli 15597
- Target spike density = 2.50E+06 PFU/mL

Continuous Flow Experiments: Pepper Mild Mottle Virus (PMMoV)

Purpose: determine log₁₀ removal values of PMMoV (infectious + non-viable) from 3° Effluent Feed

Test Organism

- PMMoV: a potential indicator for non-enveloped, human enteric viruses
- Isolated from wastewater-associated matrices^{1,2}
- lightharpoint (pl) = 3.7 3.8

Figure 3. Process Outline for Spike Experiments

- 3° Effluent feed water container filled (150 L), held open at RT overnight
- Free CI- levels verified as below detection (≤ 0.01 ppm)
- Spiking of MS2 • MS2 spiked, mixed for 30 mins, feed samples collected (2x)
 - Advanced treatment initiated by engineering team

Figure 4. Continuous Flow Tests: Feed Sample Processing

Figure 5. Continuous Flow Tests: Filtrate Sample Processing

• Filtrate samples collected for MS2 PFU enumeration **Coagulation-Microfiltration** (2L) per experimental condition

RESULTS and DISCUSSION

Figure 6. Removal of MS2 from 3° Effluent using high-basicity PACI

Figure 7. Influence of coagulant formulation and concentration on MS2 removal

Figure 8. Removal of MS2 from 2° Effluent using high**basicity PACI**

Figure 10. PMMoV Detected in 3° Effluent Feed Water: Seasonality vs. Assay Volume Equivalency

1.00E+07 0.7

Figure 9. Removal of PMMoV from 3° Effluent using high-basicity PACI (PAX-XL19)

Table 1. Removal of PMMoV from 3° Effluent using high-basicity PACI (PAX-XL19) at 50 mg/L

7/18/17, 7/25/17, 7/27/17 (n=3)	50	4.83E+05 to 2.78E+06	<1.05E+01 to 8.57E+01	4.51 to >4.68
11/30/2017 to 12/19/2017 (n=5)	50	3.90E+05 to 4.06E+06	<3.83E+00 to 3.06E+01	4.58 to 5.88
3/6/2018 (n=1)	50	4.69E+06	3.59E+01	5.12

• Figures 6 & 7: High-basicity PACI demonstrates consistent removal (>7-log10) of MS2 to levels below LOD (<1 PFU/10mL) compared to other coagulants

• Figure 8: Log_{10} removal >5-log10 achieved by 50 mg/L PACI from 2° Effluent

• Figure 9 & Table 1: Lower PACI concentrations (50 mg/L) demonstrate similar

coagulation capacity as higher PACL doses (150 mg/L) for removal of PMMoV • Figure 10: PMMoV levels in 3° Effluent demonstrate upward trend over course of study, contributing factors under investigation

CONCLUSIONS

* Coagulation-microfiltration is a promising advanced water treatment technology for consistent virus removal from 3° Effluent wastewater that may be employed for DPR purposes in the near future. Although high-basicity PACI (PAX-XL19) is more expensive than other AI-based coagulants, its higher AI content imparts greater removal efficacy as demonstrated by MS2 and PMMoV data. * More research is needed to determine sources of variability for PMMoV in 3° Effluent, including inherent seasonality effects and sample processing/concentration methods to enhance equivalent volumes.

References:

- Haramoto, E., et al. Occurrence of Pepper Mild Mottle Virus in drinking water sources in Japan. Applied and environmental microbiology, 79(23), 7413-7418.
- Rosario, K., et al. *Pepper mild mottle virus* as an indicator of fecal pollution. Applied and environmental microbiology, 75(22), 7261-7267.

All researchers and staff at WEST Center wish to acknowledge and thank METAWATER Co,. Ltd. and The University of Tokyo for your graciousness and efforts towards this valuable research.

www.iwahq.org